• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Blog archive February 1, 2016

Progress Toward Quality K-12 STEM Education: Resources for Policymakers, Researchers and Educators

STEM (science, technology, engineering, and mathematics) education quality has a major impact on economic prosperity. In the 20th century, more than half of the growth in income per capita in the United States was due to advances in science and technology. Yet today, 15-year-olds in the U.S. score below their counterparts in 21 countries on the Program for International Student Assessment (PISA) math literacy scale, and below 15 couTEM (science, technology, engineering, and mathematics) education quality has a major impact on economic prosperity. In the 20th century, more than half of the growth in income per capita in the United States was due to advances in science and technology. Yet today, 15-year-olds in the U.S. score below their counterparts in 21 countries on the Program for International Student Assessment (PISA) math literacy scale, and below 15 countries on the PISA science literacy scale. And while there has been some growth in recent years, American girls and minorities are still less likely to participate and achieve in STEM subjects and careers.

What can be done to move the needle on STEM education? While the United States has the ability to measure outputs of the educational system, such as student test scores and career choices, the U.S. does very little to measure key inputs of STEM education quality – the components in the “black box” of education that influence student achievement and career interests. We can’t improve what we don’t measure – and it’s time for the United States to start paying attention to aspects of STEM teaching and learning that can enhance all students’ STEM interest and competencies.

The National Research Council (NRC) highlights 14 indicators of progress in the nation’s STEM education, including student learning, educators’ capacity, and policy and funding initiatives. Their 2013 report, Monitoring Progress Toward Successful K-12 STEM Education, argues that collecting data on these indicators can inform monitoring and improve STEM education. This K-12 STEM Education indicator system can illuminate areas where improvement is needed and education practices should be modified—such as the amount of time devoted to elementary school science. Such a system of indicators is designed to drive improvement, not to serve as a formal accountability system.

Measuring the K-12 STEM Education Indicators: A Road Map

SRI developed a roadmap for measuring and reporting on the NRC’s 14 STEM Education Indicators. The roadmap presents available data on each indicator, as well as an agenda to support the collection of enhanced data in the future. This roadmap may be of interest to researchers, as it describes necessary future research to improve measurement of STEM education quality.

Implications of the K-12 STEM Education Indicators: Concept Papers

In addition, three education policy experts contributed concept papers that explore the research and policy implications of the indicators system. Together, these papers can guide policymakers, researchers, and educators through the potential implications and implementation of the STEM education indicator system.

1. Using Indicator Data to Drive K-12 STEM Improvements in States & Districts: Implications for Leaders & Policymakers

Michael Lach of the University of Chicago details how district and state education leaders might use the indicator system to improve STEM education. The indicators may raise leaders’ awareness and prioritization of key issues in STEM education, including quality STEM instructional materials, leadership for principals, and time allocated to teach science. His paper can be found here.

2. Measuring the Quantity & Quality of the K-12 STEM Teacher Pipeline

Teacher preparation affects student achievement, as well as teachers’ evaluations and persistence in teaching. Suzanne Wilson of University of Connecticut discusses how traditional measures of teacher preparation are only weakly related to student outcomes. Wilson highlights the NRC’s enhanced indicators of teacher preparation: science and mathematics content knowledge for teaching, and participation in STEM-specific professional development activities. It reviews state efforts and other projects designed to collect data on these indicators. Her paper can be found here.

3. 21st Century Science Assessment: The Future is Now

Jim Pellegrino of the University of Illinois at Chicago presents a vision for a balanced and coordinated system of STEM assessments that work together, and with curriculum and instruction, to promote effective science teaching and learning. Such a system would consist of assessments designed to support classroom instruction, assessments designed to monitor science learning on a broader scale, and indicators designed to track opportunity to learn. His paper can be found here.

Together, these documents explore how new indicators of STEM education quality may inform local education leadership, support quality teacher education, and shape meaningful assessment. Further, they guide researchers to consider next steps in the measurement of STEM education quality. Such purposeful collaborations between research and practice are at the heart of efforts to measure K-12 STEM education quality across the United States.

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}