Canonic representations for the geometries of multiple projective views


Luong, Q.-T. and Viéville, T. Canonic representations for the geometries of multiple projective views, in European Conference on Computer Vision, Stockholm, Sweden, pp. 589-599, 1994.


We show how a special decomposition of general projection matrices, called canonic enables us to build geometric descriptions for a system of cameras which are invariant with respect to a given group of transformations. These representations are minimal and capture completely the properties of each level of description considered: Euclidean (in the context of calibration, and in the context of structure from motion, which we distinguish clearly), affine, and projective, that we also relate to each other. In the last case, a new decomposition of the well-known fundamental matrix is obtained. Dependencies, which appear when three or more views are available, are studied in the context of the canonic decomposition, and new composition formulas are established, as well as the link between local (ie for pairs of views) representations and global (ie for a sequence of images) representations.

Read more from SRI