Efficient Online Learning and Prediction of Users’ Desktop Actions

Citation

Madani, O., Bui, H., & Yeh, E. (2009, June). Efficient online learning and prediction of users’ desktop actions. In Twenty-First International Joint Conference on Artificial Intelligence.

Abstract

We investigate prediction of users’ desktop activities in the Unix domain. The learning techniques we explore do not require explicit user teaching. We show that simple efficient many-class learning can perform well for action prediction, significantly improving over previously published results and baselines. This finding is promising for various human-computer interaction scenarios where a rich set of potentially predictive features is available, where there can be many different actions to predict, and where there can be considerable non-stationarity.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.