• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications January 22, 2023

Adolescent alcohol use is linked to disruptions in age-appropriate cortical thinning: an unsupervised machine learning approach 

Citation

Copy to clipboard


Sun, D., Adduru, V. R., Phillips, R. D., Bouchard, H. C., Sotiras, A., Michael, A. M., … & Morey, R. A. (2023). Adolescent alcohol use is linked to disruptions in age-appropriate cortical thinning: an unsupervised machine learning approach. Neuropsychopharmacology, 48(2), 317-326.

Abstract  

Cortical thickness changes dramatically during development and is associated with adolescent drinking. However, previous findings have been inconsistent and limited by region-of-interest approaches that are underpowered because they do not conform to the underlying spatially heterogeneous effects of alcohol. In this study, adolescents (n = 657; 12-22 years at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study who endorsed little to no alcohol use at baseline were assessed with structural magnetic resonance imaging and followed longitudinally at four yearly intervals. Seven unique spatial patterns of covarying cortical thickness were obtained from the baseline scans by applying an unsupervised machine learning method called non-negative matrix factorization (NMF). The cortical thickness maps of all participants’ longitudinal scans were projected onto vertex-level cortical patterns to obtain participant-specific coefficients for each pattern. Linear mixed-effects models were fit to each pattern to investigate longitudinal effects of alcohol consumption on cortical thickness. We found in six NMF-derived cortical thickness patterns, the longitudinal rate of decline in no/low drinkers was similar for all age cohorts. Among moderate drinkers the decline was faster in the younger adolescent cohort and slower in the older cohort. Among heavy drinkers the decline was fastest in the younger cohort and slowest in the older cohort. The findings suggested that unsupervised machine learning successfully delineated spatially coordinated patterns of vertex-level cortical thickness variation that are unconstrained by neuroanatomical features. Age-appropriate cortical thinning is more rapid in younger adolescent drinkers and slower in older adolescent drinkers, an effect that is strongest among heavy drinkers. 

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International