• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Biomedical sciences publications July 9, 2021 Article

Cerebrospinal Fluid Monoamine Levels in Central Disorders of Hypersomnolence

Thomas Kilduff July 9, 2021

SRI Authors: Thomas Kilduff

Citation

Copy to clipboard


Barateau L, Jaussent I, Roeser J, Ciardiello C, Kilduff TS, Dauvilliers Y. Sleep. 2021 Jul 9;44(7):zsab012. doi: 10.1093/sleep/zsab012. PMID: 33476396.

Abstract

Study objectives: Whether the cause of daytime sleepiness in narcolepsy type 1 (NT1) is a direct consequence of the loss of orexin (ORX) neurons or whether low orexin reduces the efficacy of the monoaminergic systems to promote wakefulness is unclear. The neurobiology underlying sleepiness in other central hypersomnolence disorders, narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH), is currently unknown.

Methods: Eleven biogenic amines including the monoaminergic neurotransmitters and their metabolites and five trace amines were measured in the cerebrospinal fluid (CSF) of 94 drug-free subjects evaluated at the French National Reference Center for Narcolepsy: 39 NT1(orexin-deficient) patients, 31 patients with objective sleepiness non orexin-deficient (NT2 and IH), and 24 patients without objective sleepiness.

Results: Three trace amines were undetectable in the sample: tryptamine, octopamine, and 3-iodothyronamine. No significant differences were found among the three groups for quantified monoamines and their metabolites in crude and adjusted models; however, CSF 5-hydroxyindoleacetic acid (5-HIAA) levels tended to increase in NT1 compared to other patients after adjustment. Most of the biomarkers were not associated with ORX-A levels, clinical or neurophysiological parameters, but a few biomarkers (e.g. 3-methoxy-4-hydroxyphenylglycol and norepinephrine) correlated with daytime sleepiness and high rapid eye movement (REM) sleep propensity.

Conclusions: We found no striking differences among CSF monoamines, their metabolites and trace amine levels, and few associations between them and key clinical or neurophysiological parameters in NT1, NT2/IH, and patients without objective sleepiness. Although mostly negative, these findings are a significant contribution to our understanding of the neurobiology of hypersomnolence in these disorders that remain mysterious and deserve further exploration.

Keywords: central disorders of hypersomnolence; cerebrospinal fluid; hypersomnia; hypocretin/orexin; monoamine; narcolepsy; sleepiness.

↓ View online

Share this

Facebooktwitterlinkedinmail

Biomedical sciences publications, Publication Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International