• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications May 1, 2015

Classification of Lexical Stress Using Spectral and Prosodic Features for Computer-assisted Language Learning Systems

Harry Bratt, Colleen Richey, Horacio Franco, Victor Abrash, Kristin Precoda

Citation

Copy to clipboard


Ferrer, L., Bratt, H., Richey, C., Franco, H., Abrash, V., & Precoda, K. (2015). Classification of lexical stress using spectral and prosodic features for computer-assisted language learning systems. Speech communication, 69(0), 31-45.

Abstract

We present a system for detection of lexical stress in English words spoken by English learners. This system was designed to be part of the EduSpeak® computer-assisted language learning (CALL) software. The system uses both prosodic and spectral features to detect the level of stress (unstressed, primary or secondary) for each syllable in a word. Features are computed on the vowels and include normalized energy, pitch, spectral tilt, and duration measurements, as well as log-posterior probabilities obtained from the frame-level mel-frequency cepstral coefficients (MFCCs). Gaussian mixture models (GMMs) are used to represent the distribution of these features for each stress class. The system is trained on utterances by L1-English children and tested on English speech from L1-English children and L1-Japanese children with variable levels of English proficiency. Since it is trained on data from L1-English speakers, the system can be used on English utterances spoken by speakers of any L1 without retraining. Furthermore, automatically determined stress patterns are used as the intended target; therefore, hand-labeling of training data is not required. This allows us to use a large amount of data for training the system. Our algorithm results in an error rate of approximately 11% on English utterances from L1-English speakers and 20% on English utterances from L1-Japanese speakers. We show that all features, both spectral and prosodic, are necessary for achievement of optimal performance on the data from L1-English speakers; MFCC log-posterior probability features are the single best set of features, followed by duration, energy, pitch and finally, spectral tilt features. For English utterances from L1-Japanese speakers, energy, MFCC log-posterior probabilities and duration are the most important features.

↓ Download

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}