• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications February 8, 2022

Enhancement of sensitivity and quantification quality in the LC-MS/MS measurement of large biomolecules with sum of MRM (SMRM)

Citation

Copy to clipboard


Tang L, Swezey RR, Green CE, Mirsalis JC. Enhancement of sensitivity and quantification quality in the LC-MS/MS measurement of large biomolecules with sum of MRM (SMRM). Anal Bioanal Chem. 2022 Feb;414(5):1933-1947. doi: 10.1007/s00216-021-03829-z. Epub 2022 Jan 8. Erratum in: Anal Bioanal Chem. 2022 Mar;414(8):2787. PMID: 34997251; PMCID: PMC8804067.

Abstract

Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) provides a simple and efficient means for the measurement of analytes in biological matrices with high selectivity and specificity. LC-MS/MS plays an important role in the pharmaceutical industry and biomedical research, but it requires analytes to be in an ionized form in order to be detected. This can pose a challenge for large molecules such as proteins and peptides, because they can exist in multiple charged forms, and this will reduce the total analyte signal by distributing it into multiple ion peaks with a different number of charges in a mass spectrum. In conventional LC-MS/MS analysis of such macromolecules, one charged form is selected as the precursor ion which is then fragmented by collision-induced dissociation (CID) in MS/MS to generate product ions, a process referred to as multiple-reaction monitoring (MRM). The MRM method minimizes interference from endogenous molecules within biological matrices that share the same molecular weight of the precursor ion, but at the expense of signal intensity as compared to precursor ion intensity. We describe here an approach to boost detection sensitivity and expand dynamic range in the quantitation of large molecules while maintaining analytical specificity using summation of MRM (SMRM) transitions and LC separation technique.

Keywords: Bioanalysis; Charge state distribution; LC–MS/MS; Large molecules; Sum of MRM (SMRM).

© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}