• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications May 1, 2014 Article

GABAB Agonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy

SRI author: Thomas Kilduff

Citation

Copy to clipboard


Black SW, Morairty SR, Chen TM, Leung AK, Wisor JP, Yamanaka, A, Kilduff TS (2014). GABA B aAgonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy. J. Neurosci. 34: 6485-6494. PMCID:

Abstract

γ-Hydroxybutyrate (GHB) is an approved therapeutic for the excessive sleepiness and sudden loss of muscle tone (cataplexy) characteristic of narcolepsy. The mechanism of action for these therapeutic effects is hypothesized to be GABA B receptor dependent. We evaluated the effects of chronic administration of GHB and the GABA B agonist R -baclofen ( R -BAC) on arousal state and cataplexy in two models of narcolepsy: orexin/ataxin-3 (Atax) and orexin/tTA; TetO diphtheria toxin mice (DTA). Mice were implanted for EEG/EMG monitoring and dosed with GHB (150 mg/kg), R -BAC (2.8 mg/kg), or vehicle (VEH) bid for 15 d–a treatment paradigm designed to model the twice nightly GHB dosing regimen used by human narcoleptics. In both models, R -BAC increased NREM sleep time, intensity, and consolidation during the light period; wake bout duration increased and cataplexy decreased during the subsequent dark period. GHB did not increase NREM sleep consolidation or duration, although NREM delta power increased in the first hour after dosing. Cataplexy decreased from baseline in 57 and 86% of mice after GHB and R -BAC, respectively, whereas cataplexy increased in 79% of the mice after VEH. At the doses tested, R -BAC suppressed cataplexy to a greater extent than GHB. These results suggest utility of R -BAC-based therapeutics for narcolepsy.

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International