Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized By Abnormalities in PDGFRA, IDH1, EGFR, and NF1

Citation

Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., … & Cancer Genome Atlas Research Network. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell, 17(1), 98-110.

Introduction

Summary

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFRNF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.