• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications February 1, 2014

Mechanism of Action of Flufirvitide, a Peptide Inhibitor of Influenza Virus Infection

Citation

Copy to clipboard


Badani, H., Garry, R. F., Voss, T. G., Wilson, R. B., & Wimley, W. C. (2014, 5-19 February). Mechanism of action of flufirvitide, a peptide inhibitor of influenza virus infection. Paper presented at the Annual Meeting of the Biophysical Society, San Francisco, CA

Abstract

Influenza is an infectious disease typically transmitted through the air. It is responsible for seasonal epidemics affecting millions of people, and sporadic global pandemics. Influenza infection is a membrane fusion‐dependant process, occurring in the endosome of the host cell after viral binding and endocytosis. The virus‐host membrane fusion process is mediated by hemagglutinin (HA), a viral surface glycoprotein. Studies show that when the virus is subjected to low pH in the endosome, the HA protein partially unfolds and changes conformation, exposing the fusion initiation region (FIR). A 16 amino acid peptide sequence (Flufirvitide) derived from the fusion initiation region of the HA protein has shown effective inhibition of influenza virus infection.  It is hypothesized that there is an interaction between the peptide and the FIR which inhibits fusion of the virus to the host cell. Plaque inhibition assays and animal studies show high efficacy of the peptide against the virus. We are currently developing biochemical and biophysical assays to study the interaction between Flufirvitide and HA. Circular Dichroism studies show that the peptide has a random coil conformation at pH 7 and higher. To elucidate the mechanism of fusion inhibition, the interaction between peptide and HA is being investigated with immunodetection, immunoprecipitation, and florescence techniques. Additionally, binding and interaction of the peptide with the intact virus is being studied by using Cryo‐electron microscopy.

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}