• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Biomedical sciences publications February 1, 2014 Conference Paper

Mechanism of Action of Flufirvitide, a Peptide Inhibitor of Influenza Virus Infection

SRI International February 1, 2014

Citation

Copy to clipboard


Badani, H., Garry, R. F., Voss, T. G., Wilson, R. B., & Wimley, W. C. (2014, 5-19 February). Mechanism of action of flufirvitide, a peptide inhibitor of influenza virus infection. Paper presented at the Annual Meeting of the Biophysical Society, San Francisco, CA

Abstract

Influenza is an infectious disease typically transmitted through the air. It is responsible for seasonal epidemics affecting millions of people, and sporadic global pandemics. Influenza infection is a membrane fusion‐dependant process, occurring in the endosome of the host cell after viral binding and endocytosis. The virus‐host membrane fusion process is mediated by hemagglutinin (HA), a viral surface glycoprotein. Studies show that when the virus is subjected to low pH in the endosome, the HA protein partially unfolds and changes conformation, exposing the fusion initiation region (FIR). A 16 amino acid peptide sequence (Flufirvitide) derived from the fusion initiation region of the HA protein has shown effective inhibition of influenza virus infection.  It is hypothesized that there is an interaction between the peptide and the FIR which inhibits fusion of the virus to the host cell. Plaque inhibition assays and animal studies show high efficacy of the peptide against the virus. We are currently developing biochemical and biophysical assays to study the interaction between Flufirvitide and HA. Circular Dichroism studies show that the peptide has a random coil conformation at pH 7 and higher. To elucidate the mechanism of fusion inhibition, the interaction between peptide and HA is being investigated with immunodetection, immunoprecipitation, and florescence techniques. Additionally, binding and interaction of the peptide with the intact virus is being studied by using Cryo‐electron microscopy.

↓ View online

Share this

Facebooktwitterlinkedinmail

Biomedical sciences publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International