Laser Desorption Studies Using Laser-Induced Fluorescence of Large Aromatic Molecules

Citation

Smith, G.P., Krancevic, B., Huestis, D.L. et al. Laser desorption studies using laser-induced fluorescence of large aromatic molecules. Appl. Phys. B 94, 127–132 (2009). https://doi.org/10.1007/s00340-008-3295-9

Abstract

Pulsed laser desorption of non-volatile organic dye molecules paraterphenyl and tetra-t-butyl-p-quinquephenyl (QUI) was studied using gas phase ultraviolet laser induced fluorescence, following heating of a steel substrate by a pulsed 1.06-µm Nd:YAG laser. The fluorescence signal intensity is linear in concentration up to at least 30 monolayers and shows infrared power threshold behavior, as expected for evaporation, at ∼0.2 J/cm2. Similar signal levels were also observed in air, with 532-nm heating, and using other metallic or dark black surfaces.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.