• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Chemistry, materials, & energy publications January 1, 2008 Article

Sioc Ceramic with High Excess Free Carbon

Citation

Copy to clipboard


Kleebe, H. J., & Blum, Y. D. (2008). SiOC ceramic with high excess free carbon. Journal of the European Ceramic Society, 28(5), 1037-1042.

Abstract

The correlation between microstructure evolution and increasing processing temperature of a polymer-derived SiOC ceramic with a high volume fraction of free carbon was studied by transmission electron microscopy (TEM). The high carbon content of the SiOC ceramic was achieved by crosslinking the starting precursor polyhydridomethylsiloxane (PHMS) with divinylbenzene (DVB). Focus of the TEM characterization was the evolution of the carbon phase upon pyrolysis at 1000 °C and after additional heat treatment at 1450 °C. Although a continuous structural rearrangement within the bulk SiOC matrix was observed with raising temperature, the sample annealed at 1450 °C remained predominantly amorphous, with the exception of a percolation network of turbostratic carbon and a slight precipitation of nanosized SiC particles. The micro/nanostructure observed in this sample upon thermal treatment at high-temperature suggests a phase separation in small SiO4– and SiC4-rich regions encapsulated by carbon. This specific phase distribution is consistent with the exceptional thermo-mechanical properties reported for similar high C-content SiOC materials.[…]

Keywords: Polymer-derived ceramics SiOC Carbon content Microstructure Transmission electron microscopy

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International