Studies of the Phosphorescence of Polycrystalline Hafnia

Citation

Pejaković, D. A. (2010). Studies of the phosphorescence of polycrystalline hafnia. Journal of luminescence, 130(6), 1048-1054.

Abstract

Persistent phosphorescence induced by ultraviolet light in polycrystalline HfO2 and enhancement of the phosphorescence by sintering are investigated. The phosphorescence afterglow emission is in the 1.8–3.2 eV spectral range, with a peak at 2.53 eV. The afterglow intensity is significantly increased by sintering in either inert atmosphere or air. The afterglow light sum measured at room temperature for samples sintered at 1500 °C is more than an order of magnitude higher than that before sintering. In the temperature range −50 to 200 °C, three thermoluminescence (TL) peaks are observed near −10, 30, and 100 °C. The relative contribution of the low-temperature TL peak to the total TL intensity decreases after sintering, and this effect is more pronounced upon sintering in inert atmosphere. Conversely, the contribution of the TL peak near 100 °C increases after sintering. The enhancement of the afterglow by sintering is associated with the observed increase in the intensity of TL peaks at and above room temperature and attributed to an increase in the number of deep charge traps. The room-temperature afterglow time decay has a form consistent with the second-order mechanism, ∝(t0+t)n, and the best-fit values of both fitting parameters t0 and n tend to increase with the sintering temperature.

Keywords: Hafnia, HfO2, Phosphorescence, Photoluminescence, Sintering, Thermoluminescence, Defects


Read more from SRI