• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Chemistry, materials, & energy publications February 1, 2011 Journal Article

Temperature- and Wavelength-dependent Two-photon and Free-carrier Absorption in GaAs, InP, GaInAs, and InAsP

Abstract

We present full-band structure calculations of temperature- and wavelength-dependent two-photon absorption coefficients and free-carrier absorption cross sections in GaAs, InP, and 0.92 eV-band gap Ga64In36As and InP60As40 alloys. The calculated coefficient decreases with increasing wavelength and band gap but increases with temperature. Using detailed band structure analysis, we identify various contributions to the free-carrier absorption in GaAs and InP. Although the free-carrier absorption is found to arise predominantly from hole absorption, we show that direct absorption by excited electrons is possible, leading to an enhanced free-carrier absorption coefficient. This excited state absorption could be exploited to modulate the transmission of light at communication wavelengths of 1.33 or 1.55 m with, for example, the more commonly available 0.8 m diode laser. We further show that the high-intensity transmission calculated with our values of nonlinear parameters in GaAs agrees very well with the measured values. © 2011 American Institute of Physics.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International