The Effect of Microwave-Frequency Discharge-Activated Oxygen on the Microscale Structure of Low-Temperature Water Ice Films

Citation

Doering, S. R., Strobush, K. M., Marschall, J., & Boulter, J. E. (2009). The effect of microwave-frequency discharge-activated oxygen on the microscale structure of low-temperature water ice films. The Journal of chemical physics, 131(22), 224706.

Abstract

Low-temperature, amorphous water ice films grown by vapor deposition under high-vacuum are exposed to microwave-frequency discharge-activated oxygen in order to investigate its effect on the ice surface. Adsorption of methane is used to probe alterations to microscale structures and surface morphology. Films are interrogated throughout the experiment by grazing-angle Fourier-transform infrared reflection-absorption spectroscopy, and after the experiment by temperature-programmed desorption mass spectrometry. Multilayer Fresnel thin-film optics simulations aid in the interpretation of absorbance spectra. Using these techniques, structural alterations are observed over a range of spatial and time scales. At first, spectral absorbance features arising from incompletely coordinated water molecules disappear. The density of high-energy methane adsorption sites is reduced, lowering the equilibrium amount of adsorbed methane. At longer exposure times, this is manifested in a narrowing of the width of the primary methane desorption peak, indicating a narrower range of methane adsorption energies on the ice surface. Together these observations indicate restructuring of micropores resulting in an increase in the structural homogeneity of the film. Enhancement of small, higher-temperature methane desorption features associated with methane encapsulation during thermal annealing indicates alterations to larger pore structures by the same restructuring process. Attribution of these effects to various energetic species in active oxygen is discussed. Based on their abundance, O(𝑃3)O(P3) and O2(𝑎𝛥1𝑔)O2(a Δ1g) are the most likely candidates; other trace atomic and molecular species may also contribute.


Read more from SRI