• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search Search
Hide Search Close
Human behavior modeling publications September 1, 2013 Article

A Hierarchical Behavior Analysis Approach for Automated Trainee Performance Evaluation in Training Ranges

Rakesh Kumar September 1, 2013

SRI author: Rakesh Kumar

Citation

Copy to clipboard


S. Khan, H. Cheng, R. Kumar, “A Hierarchical Behavior Analysis Approach for Automated Trainee Performance Evaluation in Training Ranges”, Foundations of Augmented Cognition, Lecture Notes in Computer Science, Volume 8027, 2013, pp 60-69

Abstract

In this paper we present a closed loop mixed reality training system that provides automatic assessment of trainee performance during kinetic military exercises. At the core of our system is a hierarchical behavior analysis approach that integrates a number of data sensor modalities including Audio/Video, RFID and IMUs to automatically capture trainee actions in a comprehensive manner. Our behavior analysis and performance evaluation framework uses a finite state machine (FSM) model in which trainee behaviors are the states of the training scenario and the transitions of states are caused by stimuli that we refer to as trigger events. The goal of behavior analysis is to estimate the states of the trainees with respect to the training scenario and quantify trainee performance. To robustly detect each state, we build classifiers for each behavioral state and trigger event. At a given time, based on the state estimation, a set of related classifiers are activated for detecting trigger events and states that can be transitioned to and from the current states. The overall structure of the FSM and trigger events is determined by a Training Ontology that is specific to the training scenario.

↓ View online

Share this

Facebooktwitterlinkedinmail

Computer vision publications, Human behavior modeling publications, Publication Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International