• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Human behavior modeling publications September 1, 2007

Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image

Citation

Copy to clipboard


Yue, Z., Zhao, W., & Chellappa, R. (2007). Pose-encoded spherical harmonics for face recognition and synthesis using a single image. EURASIP Journal on Advances in Signal Processing, 2008, 1-18.

Abstract

Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. In this paper, we propose to address one of the most challenging scenarios in face recognition. That is, to identify a subject from a test image that is acquired under different pose and illumination condition from only one training sample (also known as a gallery image) of this subject in the database. For example, the test image could be semi-frontal and illuminated by multiple lighting sources while the corresponding training image is frontal under a single lighting source. Under the assumption of Lambertian reflectance, the spherical harmonics representation has proved to be effective in modeling illumination variations for a fixed pose. In this paper, we extend the spherical harmonics representation to encode pose information. More specifically, we utilize the fact that 2D harmonic basis images at different poses are related by close-form linear transformations, and give a more convenient transformation matrix to be directly used for basis images. An immediate application is that we can easily synthesize a different view of a subject under arbitrary lighting conditions by changing the coefficients of the spherical harmonics representation. A more important result is an efficient face recognition method, based on the orthonormality of the linear transformations, for solving the above-mentioned challenging scenario. Thus, we directly project a non-frontal view test image onto the space of frontal view harmonic basis images. The impact of some empirical factors due to the projection is embedded in a sparse warping matrix; for most cases, we show that the recognition performance does not deteriorate after warping the test image to the frontal view. Very good recognition results are obtained using this method for both synthetic and challenging real images.

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}