Learn, Generate, Rank, Explain: A Case Study of Explanation by Generation


C. Kim; X. Lin; C. Collins; G.Taylor; M. Amer, Learn, Generate, Rank, Explain: A Case Study of Explanation by Generation, ACM International Conference on Intelligent User Interfaces, California, March 17, 2019


While the computer vision problem of searching for activities in videos is usually addressed by using discriminative models, their decisions tend to be opaque and difficult for people to understand. We propose a case study of a novel machine learning approach for generative searching and ranking of motion capture activities with visual explanation. Instead of directly ranking videos in the database given a text query, our approach uses a variant of Generative Adversarial Networks (GANs) to generate exemplars based on the query and uses them to search for the activity of interest in a large database. Our model is able to achieve comparable results to its discriminative counterpart, while being able to dynamically generate visual explanations. In addition to our searching and ranking method, we present an explanation interface that enables the user to successfully explore the model’s explanations and its confidence by revealing query-based, model-generated motion capture clips that contributed to the model’s decision. Finally, we conducted a user study with 44 participants to show that by using our model and interface, participants benefit from a deeper understanding of the model’s conceptualization of the search query. We discovered that the XAI system yielded a comparable level of efficiency, accuracy, and user-machine synchronization as its black-box counterpart, if the user exhibited a high level of trust for AI explanation.

Read more from SRI