• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Cyber & formal methods publications January 1, 2009

New Techniques for Private Stream Searching

Citation

Copy to clipboard


Bethencourt, J., Song, D., & Waters, B. (2009). New techniques for private stream searching. ACM Transactions on Information and System Security (TISSEC), 12(3), 1-32.

Abstract

A system for private stream searching, introduced by Ostrovsky and Skeith, allows a client to provide an untrusted server with an encrypted search query. The server uses the query on a stream of documents and returns the matching documents to the client while learning nothing about the nature of the query. We present a new scheme for conducting private keyword search on streaming data which requires O(m) server to client communication complexity to return the content of the matching documents, where m is an upper bound on the size of the documents. The required storage on the server conducting the search is also O(m). The previous best scheme for private stream searching was shown to have O(m logm) communication and storage complexity. Our solution employs a novel construction in which the user reconstructs the matching files by solving a system of linear equations. This allows the matching documents to be stored in a compact buffer rather than relying on redundancies to avoid collisions in the storage buffer as in previous work. This technique requires a small amount of metadata to be returned in addition to the documents; for this the original scheme of Ostrovsky and Skeith may be employed with O(m logm) communication and storage complexity. We also present an alternative method for returning the necessary metadata based on a unique encrypted Bloom filter construction. This method requires O(m log(t/m)) communication and storage complexity, where t is the number of documents in the stream. In this article we describe our scheme, prove it secure, analyze its asymptotic performance, and describe a number of extensions. We also provide an experimental analysis of its scalability in practice. Specifically, we consider its performance in the demanding scenario of providing a privacy preserving version of the Google News Alerts service.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}