Utilizing Usability Testing Methods To Improve Oerl

Citation

Fusco, J., Huang, J., & Harris, A. (2005). Utilizing usability testing methods to improve OERL. Paper presented at the American Educational Research Association (AERA) Annual Meeting, Montreal, Canada.

Abstract

In this paper, we describe a method for leader detection in multiparty spoken discourse that relies on unsupervised topic modeling to segment the discourse automatically. Latent Dirichlet allocation is applied to sliding temporal windows of utterances, resulting in a topic model which captures the fluid transitions from topic to topic which occur in multi-party discourse. Further processing discretizes the continuous topic mixtures into sequential topic segments. Features are extracted from topic shift regions and used to train a binary role classifier. The added topic shift features significantly improve the baseline performance on two corpora, demonstrating both the value of the features and the robustness of the unsupervised segmentation. Furthermore, our classification results on the ICSI corpus, using automatically segmented topics, are better than the results using ground truth segmentations.


Read more from SRI

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.

  • SRI research aims to make generative AI more trustworthy

    Researchers have developed a new framework that reduces generative AI hallucinations by up to 32%.