• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Energy & green tech publications August 1, 2014

A Top to Bottom Evaluation of IRI 2007 within the Polar Cap

Citation

Copy to clipboard


Themens, D. R., Jayachandran, P. T., Nicolls, M. J., & MacDougall, J. W. (2014). A top to bottom evaluation of IRI 2007 within the polar cap. Journal of Geophysical Research-Space Physics, 119(8).

Abstract

Monthly median values of ionospheric peak height (hmF2) and density (NmF2), derived from ionosonde measurements at four Canadian High Arctic Ionospheric Network (CHAIN) stations situated within the polar cap and Auroral Oval, are used to evaluate the performance of the International Reference Ionosphere (IRI) 2007 empirical ionospheric model during the recent solar minimum between 2008 and 2010. This analysis demonstrates notable differences between IRI and ionosonde NmF2 diurnal and seasonal behavior over the entire period studied, where good agreement is found during summer periods but otherwise errors in excess of 50% were prevalent, particularly during equinox periods. hmF2 is found to be marginally overestimated during winter and equinox nighttime, while also being underestimated during summer and equinox daytime by in excess of 25%. These errors are shown to be related to significant mismodeling of the M(3000)F2 propagation factor. The ionospheric bottomside thickness parameter (B0) is also evaluated using ionosonde measurements. It is found that both of the IRI’s internal B0 models significantly misrepresent both seasonal and diurnal variations in bottomside thickness when compared to ionosonde observations, where errors at times exceed 40%. A comparison is also presented between IRI and Resolute (74.75N, 265.00E) Advanced Modular Incoherent Scatter Radar (AMISR)-derived topside thickness. It is found in this comparison that the IRI is capable of modeling ionospheric topside thickness exceptionally well during winter and summer periods but fails to represent significant diurnal variability during the equinoxes and seasonal variations.

Key Points

  • IRI 2007 is evaluated within the polar cap region
  • Diurnal and seasonal variations in the IRI 2007 F2 peak are poorly represented
  • IRI 2007 topside thickness demonstrates notable agreement on the annual mean

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}