• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications November 1, 2016

Assessment and Content Authoring in Semantic Virtual Environments

Karen Myers, Grit Denker, Melinda Gervasio

Citation

Copy to clipboard


Greuel, C., Myers, K., Denker, G., & Gervasio, M. (2016). Assessment and content authoring in semantically enabled virtual environments. In Proc. of Interservice/Industry Training, Simulation and Education Conference (I/ITSEC). Orlando, FL.

Abstract

Virtual environments (VEs) provide an appealing vehicle for training complex skills, particularly for domains where real-world practice incurs significant time, expense, or risk. Two impediments currently block widespread use of intelligent training tools for VEs. The first impediment is that techniques for assessing performance focus on algorithmic skills that force learners to follow rigid solution paths. The second impediment is the high cost of authoring the models that drive intelligent training capabilities.

This paper presents an approach to training in VEs that directly addresses these challenges and summarizes its application to a weapons maintenance task. With our approach, a learner’s actions are recorded as he completes training exercises in a semantically instrumented VE. An example-tracing methodology, in which the learner’s actions are compared to a predefined solution model, is used to generate assessment information with contextually relevant feedback. Novel graph-matching technology, grounded in edit-distance optimization, aligns student actions with solution models while tolerating significant deviation. With this robustness to learner mistakes, assessment can support exploratory learning processes rather than forcing learners down fixed solution paths.

Our approach to content creation leverages predefined ontologies, enabling authoring by domain experts rather than technology experts. A semantic mark-up framework supports authors in overlaying ontologies onto VE elements and in specifying actions with their effects. Drawing on these semantics, exercises and their solutions are created through end-user programming techniques: a domain expert demonstrates one or more solutions to a task and then annotates those solutions to define a generalized solution model. A concept validation study shows that users are comfortable with this approach and can apply it to create quality solution models.

↓ Download PDF

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International