• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications January 1, 2009

Distributed Multi-Sensor Fusion for Improved Collaborative GPS-Denied Navigation

Citation

Copy to clipboard


Wu, S., Kaba, J., Mau, S., Zhao, T., (January 2009). “Distributed Multi-Sensor Fusion for Improved Collaborative GPS-Denied Navigation,” Proceedings of the 2009 International Technical Meeting of The Institute of Navigation, Anaheim, CA.

Abstract

This paper addresses the problem of determining high accuracy absolute and relative 3-D positions of mobile sensor network nodes by fusing inertial and radio frequency (RF) ranging measurements to support collaborative navigation in GPS-denied environments. We summarize four multi-sensor fusion algorithms based on optimization and Extended Kalman Filtering (EKF) techniques, focusing on a novel distributed iterative EKF formulation. We derive a general error scaling law, termed the “Teamwork Effect,” e(n, s)?e (1, s)/ n , where e (1, s) is the error of each node’s individual location estimate as a function of s (e.g. time or distance traveled) and e (n, s) is the improved location error a node can expect when collaborating as a member of a size n network, under idealized assumptions. Simulations of a variety of operational scenarios show that each approach can localize both the absolute and relative positions of a mobile network with high accuracy, even under non-ideal conditions involving greatly varying INU and RF sensor noise models. In addition to validating the predicted n error reduction of the “Teamwork Effect,” the simulations demonstrate additional collaborative effects of the multisensor fusion algorithms. An “Anchor Effect” enables the flexible use of minimal numbers of optional RF navigation reference beacons to greatly reduce long-term error growth. A “Reset Effect” provides an automatic reset of location estimate uncertainties from larger to lower values under certain common operational conditions, resulting in position estimates that improve, rather than degrade, over time. By comparing the trade off between performance and computational complexities, we conclude that our distributed iterative EKF algorithm is a good candidate for implementation in a real-time high-performance navigation system supported by a lowbandwidth tactical network.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}