• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications March 1, 2017 Conference Paper

FHE over the Integers: Decomposed and Batched in the Post-Quantum Regime

SRI International March 1, 2017

Citation

Copy to clipboard


Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint. “FHE over the Integers: Decomposed and Batched in the Post-Quantum Regime.” In Public-Key Cryptography – PKC 2017 – 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II, pp. 271-301. Springer.

Abstract

Fully homomorphic encryption over the integers (FHE-OI) is currently the only alternative to lattice-based FHE. FHE-OI includes a family of schemes whose security is based on the hardness of different variants of the approximate greatest common divisor (AGCD) problem. A lot of effort was made to port techniques from second generation lattice-based FHE (using tensoring) to FHE-OI. Gentry, Sahai and Waters (Crypto 13) showed that third generation techniques (which were later formalized using the “gadget matrix”) can also be ported. However, the majority of these works was based on the noise-free variant of AGCD which is potentially weaker than the general one. In particular, the noise-free variant relies on the hardness of factoring and is thus vulnerable to quantum attacks.

In this work, we propose a comprehensive study of applying third generation FHE techniques to the regime of FHE-OI. We present and analyze a third generation FHE-OI based on decisional AGCD without the noise-free assumption. We proceed to showing a batch version of our scheme where each ciphertext can encode a vector of messages and operations are performed coordinate-wise. We use a similar AGCD variant to Cheon et al. (Eurocrypt 13) who suggested the batch approach for second generation FHE, but we do not require the noise-free component or a subset sum assumption. However, like Cheon et al., we do require circular security for our scheme, even for bounded homomorphism. Lastly, we discuss some of the obstacles towards efficient implementation of our schemes and discuss a number of possible optimizations.

↓ View online

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International