• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications May 1, 2015 Article

Snap-N-Eat: Food Recognition and Nutrition Estimation on a Smartphone

Citation

Copy to clipboard


Zhang, W., Yu, Q., Siddiquie, B., Divakaran, A., & Sawhney, H. (2015). “Snap-n-Eat”: food recognition and nutrition estimation on a smartphone. Journal of Diabetes Science and Technology, 9(3), 525-533. doi: 10.1177/1932296815582222

Abstract

We present snap-n-eat, a mobile food recognition system. The system can recognize food and estimate the calorific and nutrition content of foods automatically without any user intervention. To identify food items, the user simply snaps a photo of the food plate. The system detects the salient region, crops its image, and subtracts the background accordingly. Hierarchical segmentation is performed to segment the image into regions. We then extract features at different locations and scales and classify these regions into different kinds of foods using a linear support vector machine classifier. In addition, the system determines the portion size which is then used to estimate the calorific and nutrition content of the food present on the plate. Previous approaches have mostly worked with either images captured in a lab setting, or they require additional user input (eg, user crop bounding boxes). Our system achieves automatic food detection and recognition in real-life settings containing cluttered backgrounds. When multiple food items appear in an image, our system can identify them and estimate their portion size simultaneously. We implemented this system as both an Android smartphone application and as a web service. In our experiments, we have achieved above 85% accuracy when detecting 15 different kinds of foods.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International