• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Education & learning publications March 1, 2017

Learner Modeling for Adaptive Scaffolding in a Computational Thinking-Based Science Learning Environment

SRI Authors: Satabdi Basu

Citation

Copy to clipboard


Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in a Computational Thinking-based science learning environment. User Modeling and User-Adapted Interaction, 27 (1), 5–53.

Abstract

Learner modeling has been used in computer-based learning environments to model learners’ domain knowledge, cognitive skills, and interests, and customize their experiences in the environment based on this information. In this paper, we develop a learner modeling and adaptive scaffolding framework for Computational Thinking using Simulation and Modeling (CTSiM)–an open ended learning environment that supports synergistic learning of science and Computational Thinking (CT) for middle school students. In CTSiM, students have the freedom to choose and coordinate use of the different tools provided in the environment, as they build and test their models. However, the open-ended nature of the environment makes it hard to interpret the intent of students’ actions, and to provide useful feedback and hints that improves student understanding and helps them achieve their learning goals. To address this challenge, we define an extended learner modeling scheme that uses (1) a hierarchical task model for the CTSiM environment, (2) a set of strategies that support effective learning and model building, and (3) effectiveness and coherence measures that help us evaluate student’s proficiency in the different tasks and strategies. We use this scheme to dynamically scaffold learners when they are deficient in performing their tasks, or they demonstrate suboptimal use of strategies. We demonstrate the effectiveness of our approach in a classroom study where one group of 6th grade students received scaffolding and the other did not. We found that students who received scaffolding built more accurate models, used modeling strategies effectively, adopted more useful modeling behaviors, showed a better understanding of important science and CT concepts, and transferred their modeling skills better to new scenarios.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International