Studies of a Prototype Linear Stationary X-Ray Source for Tomosynthesis Imaging

Citation

Schwoebel, P. R., Boone, J. M., & Shao, J. (2014). Studies of a prototype linear stationary x-ray source for tomosynthesis imaging. Physics in Medicine and Biology, 59(10), 2393-2413. doi: 10.1088/0031-9155/59/10/2393

Abstract

A prototype linear x-ray source to implement stationary source–stationary detector tomosynthesis (TS) imaging has been studied. Potential applications include human breast and small animal imaging. The source is comprised of ten x-ray source elements each consisting of a field emission cathode, electrostatic lens, and target. The electrostatic lens and target are common to all elements. The source elements form x-ray focal spots with minimum diameters of 0.3–0.4 mm at electron beam currents of up to 40 mA with a beam voltage of 40 kV. The x-ray flux versus time was quantified from each source. X-ray bremsstrahlung spectra from tungsten targets were produced using electron beam energies from 35 to 50 keV. The half-value layer was measured to be 0.8, 0.9, and 1.0 mm, respectively, for the 35, 40, and 45 kV tube potentials using the tungsten target. The suppression of voltage breakdown events, particularly during source operation, and the use of a modified form of the standard cold-cathode geometry, enhanced source reliability. The prototype linear source was used to collect tomographic data sets of a mouse phantom using digital TS reconstruction methods and demonstrated a slice-sensitivity profile with a full-width-half-maximum of 1.3 mm. Lastly, preliminary studies of tomographic imaging of flow through the mouse phantom were performed.


Read more from SRI