• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Oceans & space publications April 1, 2014 Article

Auroral Ionospheric F Region Density Cavity Formation and Evolution: Mica Campaign Results

Abstract

Auroral ionospheric F region density depletions observed by PFISR (Poker Flat Incoherent Scatter Radar) during the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket campaign are critically examined alongside complementary numerical simulations. Particular processes of interest include cavity formation due to intense frictional heating and Pedersen drifts, evolution in the presence of structured precipitation, and refilling due to impact ionization and downflows. Our analysis uses an ionospheric fluid model which solves conservation of mass, momentum, and energy equations for all major ionospheric species. These fluid equations are coupled to an electrostatic current continuity equation to self-consistently describe auroral electric fields. Energetic electron precipitation inputs for the model are specified by inverting optical data, and electric field boundary conditions are obtained from direct PFISR measurements. Thus, the model is driven in as realistic a manner as possible. Both incoherent scatter radar (ISR) data and simulations indicate that the conversion of the F region plasma to molecular ions and subsequent recombination is the dominant process contributing to the formation of the observed cavities, all of which occur in conjunction with electric fields exceeding ∼90 mV/m. Furthermore, the cavities often persist several minutes past the point when the frictional heating stops. Impact ionization and field-aligned plasma flows modulate the cavity depth in a significant way but are of secondary importance to the molecular generation process. Informal comparisons of the ISR density and temperature fits to the model verify that the simulations reproduce most of the observed cavity features to a reasonable level of detail.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International