• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Oceans & space publications January 1, 2014 Article

Empirical Model of Poynting Flux Derived from Fast Data and a Cusp Signature

SRI International January 1, 2014

Abstract

Empirical models of the Poynting flux and particle kinetic energy flux, associated with auroral processes, have been constructed using data from the FAST satellite and are available online. The models output flux maps as a function of several geophysical parameters: (1) clock angle of the interplanetary magnetic field (IMF), (2) magnitude of the IMF in the GSM y-z plane, (3) solar wind speed, (4) solar wind number density, (5) magnetic dipole tilt angle, and (6) the AL index (optional for Poynting flux). The choice of parameters is motivated by the Weimer potential model. Because the Poynting flux distribution has a heavy tail, care must be taken in applying the model to events that may be uncommon, and the model output includes a measure of quality based on the density of FAST orbits in the parameter space. The models are constructed by fitting the data to a sum of empirical orthogonal functions (EOFs), with coefficients modeled by quadratic equations in the geophysical parameters. The EOFs are constructed from the same data set using singular value decomposition, along with a smoothing/interpolation algorithm that minimizes curvature and incorporates uncertainty. Potential applications include specification of the auroral energy input for general circulation models. Basic findings from the model include verification of the importance of the auroral electrojets as features of auroral Poynting flux deposition and identification of the cusp as a third important feature. The cusp makes an important contribution to the overall energy budget when the IMF is north of ±90°.

↓ View online

Share this

Facebooktwitterlinkedinmail

Oceans & space publications, Publication Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International