• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Oceans & space publications April 1, 2011

Evaluation of Stratospheric No2 Retrieved from the Ozone Monitoring Instrument: Intercomparison, Diurnal Cycle, and Trending

Citation

Copy to clipboard


Dirksen, R. J., Boersma, K. F., Eskes, H. J., Ionov, D. V., Bucsela, E. J., Levelt, P. F., & Kelder, H. M. (2011). Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument: Intercomparison, diurnal cycle, and trending. Journal of Geophysical Research: Atmospheres, 116(D8).

Abstract

A 5+ year record of satellite measurements of nitrogen dioxide columns from the Ozone Monitoring Instrument (OMI) is evaluated to establish the quality of the OMI retrievals and to test our understanding of stratospheric NO2. The use of assimilation techniques to retrieve stratospheric vertical columns of NO2 from OMI slant column observations is described in detail. Over remote areas the forecast model state is generally within 0.15 × 1015 molecules/cm2 of the analysis. Dutch OMI NO2 (DOMINO) and Standard Product (SP) stratospheric NO2 columns agree within 0.3 × 1015 molecules/cm2 (13%) with independent, ground-based measurements. This is comparable to the level of consistency (15–20%) among ground-based techniques. On average, DOMINO stratospheric NO2 is higher than SP by 0.2 × 1015 molecules/cm2, but larger differences occur on the synoptic scale. Overlapping OMI orbits poleward of 30° enabled us to extract information on the diurnal variation in stratospheric NO2. We find that in the Arctic, the daytime increase of NO2 has a distinct seasonal dependence that peaks in spring and fall. Daytime increase rates inside the denoxified Arctic polar vortex are low, but we find high rates (>0.4 × 1015 molecules/cm2/h) outside the vortex. A multilinear regression to the DOMINO record shows a distinct quasi-biennial oscillation (QBO) signal in stratospheric NO2 columns over the tropics. The QBO’s amplitude is comparable to the annual cycle and stronger over the Southern Hemisphere than over the Northern Hemisphere. We infer near-identical trends from DOMINO observations (+0.4%/decade) as from ground-based instrumentation over Lauder (+0.6%/decade) in the 2004–2010 period.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}