• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Robotics, sensors, & devices publications February 1, 2008

Evaluation of a Near-Field Monostatic-To-Bistatic Equivalence Theorem

Citation

Copy to clipboard


C. J. Bradley, P. J. Collins, D. G. Falconer, J. Fortuny-Guasch and A. J. Terzuoli, “Evaluation of a Near-Field Monostatic-to-Bistatic Equivalence Theorem,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 2, pp. 449-457, Feb. 2008, doi: 10.1109/TGRS.2007.909107.

Abstract

This paper presents the results of an investigation to quantitatively determine the limits of Falconer’s monostatic-to-bistatic equivalence theorem (MBET). Falconer developed two extensions to Kell’s MBET: one that is applicable to near-zone data and one that is valid in both the near- and far-zone regions. This paper encompassed collecting and analyzing both monostatic and bistatic radar cross-section data for perfect electrically conducting objects. Specifically, the authors analyzed the effects of varying the transmission frequency, scattering object complexity, and receiver bistatic angle. Objects ranged in geometric complexity from simple canonical objects to multifaceted shapes that produce multiple reflections. Empirical data collected in the far zone were compared with the analytical predictions produced by a commercially available method-of-moment (MoM) code. The code was run at X-band through K-band frequencies for a comparison with the measured data. The empirical bistatic data were then compared with the estimate produced by the MBET to ascertain the region in which the MBET approximation is applicable. Finally, the MoM code was used to produce near-field scattering predictions to facilitate the evaluation of Falconer’s near-field MBET. It is shown that the complexity of the scatterer restricts the region of validity for the MBET, where shadowing and multipath interactions prevail. The disparity between the MBET accuracies for the different test objects used clearly illustrates this point.

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}