Speak little and well: recommending conversations in online social streams

Citation

Chen, J.; Nairn, R.; Chi, E. H. Speak little and well: recommending conversations in online social streams. ACM CHI Conference on Human Factors in Computing Systems (CHI); 2011 May 7-12; Vancouver, BC, Canada.

Abstract

Conversation is a key element in online social streams such as Twitter and Facebook. However, finding interesting conversations to read is often a challenge, due to information overload and differing user preferences. In this work we explored five algorithms that recommend conversations to Twitter users, utilizing thread length, topic and tie-strength as factors. We compared the algorithms through an online user study and gathered feedback from real Twitter users. In particular, we investigated how users purposes of using Twitter affect user preferences for different types of conversations and the performance of different algorithms. Compared to a random baseline, all algorithms recommended more interesting conversations. Further, tie-strength based algorithms performed significantly better for people who use Twitter for social purposes than for people who use Twitter for informational purpose only.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.