• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications March 1, 2005

Automatic Dialog Act Segmentation and Classification in Multiparty Meetings

Citation

Copy to clipboard


Ang, J., Liu, Y., & Shriberg, E. (2005, March). Automatic dialog act segmentation and classification in multiparty meetings. In Proceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. (Vol. 1, pp. I-1061). IEEE.

Abstract

We explore the two related tasks of dialog act (DA) segmentation and DA classification for speech from the ICSI Meeting Corpus. We employ simple lexical and prosodic knowledge sources, and compare results for human-transcribed versus automatically recognized words. Since there is little previous work on DA segmentation and classification in the meeting domain, our study provides baseline performance rates for both tasks. We introduce a range of metrics for use in evaluation, each of which measures different aspects of interest. Results show that both tasks are difficult, particularly for a fully automatic system. We find that a very simple prosodic model aids performance over lexical information alone, especially for segmentation. Both tasks, but particularly word-based segmentation, are degraded by word recognition errors. Finally, while classification results for meeting data show some similarities to previous results for telephone conversations, findings also suggest a potential difference with respect to the effect of modeling DA context.

↓ Download

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International