Automatic Disfluency Identification in Conversational Speech Using Multiple Knowledge Sources

Citation

Liu, Y., Shriberg, E., & Stolcke, A. (2003). Automatic disfluency identification in conversational speech using multiple knowledge sources. In Eighth European Conference on Speech Communication and Technology.

Abstract

Disfluencies occur frequently in spontaneous speech. Detection and correction of disfluencies can make automatic speech recognition transcripts more readable for human readers, and can aid downstream processing by machine. This work investigates a number of knowledge sources for disfluency detection, including acoustic-prosodic features, a language model (LM) to account for repetition patterns, a part-of-speech (POS) based LM, and rule-based knowledge. Different components are designed for different purposes in the system. Results show that detection of disfluency interruption points is best achieved by a combination of prosodic cues, word-based cues, and POS-based cues. The onset of a disfluency to be removed, in contrast, is best found using knowledge-based rules. Finally, specific disfluency types can be aided by the modeling of word patterns.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.