• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications August 1, 2007

Co-training Using Prosodic and Lexical Information for Sentence Segmentation

Citation

Copy to clipboard


Güz, Ü., Cuendet, S., Hakkani-Tür, D., & Tür, G. (2007, August). Co-training using prosodic and lexical information for sentence segmentation. In Interspeech (pp. 2597-2600).

Abstract

We investigate the application of the co-training learning algorithm on the sentence boundary classification problem by using lexical and prosodic information. Co-training is a semisupervised machine learning algorithm that uses multiple weak classifiers with a relatively small amount of labeled data and incrementally uses unlabeled data. The assumption in cotraining is that the classifiers can co-train each other, as one can label samples that are difficult for the other. The sentence segmentation problem is very appropriate for the co-training method since it satisfies the main requirements of the cotraining algorithm: the dataset can be described by two disjoint and natural views that are redundantly sufficient. In our case, the feature sets are capturing lexical and prosodic information. The experimental results on the ICSI Meeting (MRDA) corpus show the effectiveness of the co-training algorithm for this task.

Index Terms: co-training, sentence segmentation, prosody, self-training, Boosting

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International