Detecting Action Items in Multi-party Meetings: Annotation and Initial Experiments

SRI author:

Citation

Purver Matthew, Ehlen Patrick, Niekrasz John. “Detecting Action Items in Multi-party Meetings: Annotation and Initial Experiments”in Machine Learning for Multimodal Interaction: Third International Workshop, MLMI 2006, Bethesda, MD, USA, May 1-4, 2006, Revised Selected Papers”, pp. “200-211”, “Springer Berlin Heidelberg”, 2006.

Abstract

This paper presents the results of initial investigation and experiments into automatic action item detection from transcripts of multi-party human-human meetings. We start from the flat action item annotations of [1], and show that automatic classification performance is limited. We then describe a new hierarchical annotation schema based on the roles utterances play in the action item assignment process, and propose a corresponding approach to automatic detection that promises improved classification accuracy while also enabling the extraction of useful information for summarization and reporting.


Read more from SRI

  • A rendering of the Parker Solar Probe inside the sun's corona.

    Parker Solar Probe: Our closest look at the sun

    SRI imaging technology supports a record-shattering NASA mission.

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.