• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications January 1, 2008

Error-Driven Generalist+Experts (EDGE): a Multi-Stage Ensemble Framework for Text Categorization

Citation

Copy to clipboard


Huang,J., Madani,O., Giles,C.L., CIKM ’08: Proceedings of the 17th ACM conference on Information and knowledge managementOctober 2008 Pages 83–92https://doi.org/10.1145/1458082.1458097

Abstract

We introduce a multi-stage ensemble framework, Error-Driven Generalist+Expert or Edge, for improved classification on large-scale text categorization problems. Edge first trains a generalist, capable of classifying under all classes, to deliver a reasonably accurate initial category ranking given an instance. Edge then computes a confusion graph for the generalist and allocates the learning resources to train experts on relatively small groups of classes that tend to be systematically confused with one another by the generalist. The experts’ votes, when invoked on a given instance, yield a reranking of the classes, thereby correcting the errors of the generalist. Our evaluations showcase the improved classification and ranking performance on several large-scale text categorization datasets. Edge is in particular efficient when the underlying learners are efficient. Our study of confusion graphs is also of independent interest.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International