• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications June 1, 2016 Conference Paper

Exploring the role of phonetic bottleneck features for speaker and language recognition

SRI authors: Aaron Lawson, Mitchell McLaren

Citation

Copy to clipboard


M. McLaren, L. Ferrer and A. Lawson, “Exploring the role of phonetic bottleneck features for speaker and language recognition,” in Proc. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5575-5579.

Abstract

Using bottleneck features extracted from a deep neural network (DNN) trained to predict senone posteriors has resulted in new, state-of-the-art technology for language and speaker identification. For language identification, the features’ dense phonetic information is believed to enable improved performance by better representing language-dependent phone distributions. For speaker recognition, the role of these features is less clear, given that a bottleneck layer near the DNN output layer is thought to contain limited speaker information. In this article, we analyze the role of bottleneck features in these identification tasks by varying the DNN layer from which they are extracted, under the hypothesis that speaker information is traded for dense phonetic information as the layer moves toward the DNN output layer. Experiments support this hypothesis under certain conditions, and highlight the benefit of using a bottleneck layer close to the DNN output layer when DNN training data is matched to the evaluation conditions, and a layer more central to the DNN otherwise.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International