• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications October 1, 2007

Extending Boosting for Large Scale Spoken Language Understanding

Citation

Copy to clipboard


Tur, G. (2007). Extending boosting for large scale spoken language understanding. Machine Learning, 69(1), 55-74.

Abstract

We propose three methods for extending the Boosting family of classifiers motivated by the real-life problems we have encountered. First, we propose a semisupervised learning method for exploiting the unlabeled data in Boosting.We then present a novel classification model adaptation method. The goal of adaptation is optimizing an existing model for a new target application, which is similar to the previous one but may have different classes or class distributions. Finally, we present an efficient and effective cost-sensitive classification method that extends Boosting to allow for weighted classes. We evaluated these methods for call classification in the AT&T VoiceTone(r) spoken language understanding system. Our results indicate that it is possible to obtain the same classification performance by using 30% less labeled data when the unlabeled data is utilized through semisupervised learning. Using model adaptation we can achieve the same classification accuracy using less than half of the labeled data from the new application. Finally, we present significant improvements in the “important” (i.e., higher weighted) classes without a significant loss in overall performance using the proposed cost-sensitive classification method.

↓ Download

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International