• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications May 1, 2017 Journal Article

Hybrid Convolutional Neural Networks for Articulatory and Acoustic Information Based Speech Recognition

Citation

Copy to clipboard


Mitra, V., Sivaraman G., Nam H., Espy-Wilson C., Saltzman E. and Tiede M. (2017). Hybrid convolutional neural networks for articulatory and acoustic information based speech recognition. Speech Communication, Volume 89, pp. 103-112.

Abstract

Studies have shown that articulatory information helps model speech variability and, consequently, improves speech recognition performance. But learning speaker-invariant articulatory models is challenging, as speaker-specific signatures in both the articulatory and acoustic space increase complexity of speech-to-articulatory mapping, which is already an ill-posed problem due to its inherent nonlinearity and non-unique nature. This work explores using deep neural networks (DNNs) and convolutional neural networks (CNNs) for mapping speech data into its corresponding articulatory space. Our speech-inversion results indicate that the CNN models perform better than their DNN counterparts. In addition, we use these inverse-models to generate articulatory information from speech for two separate speech recognition tasks:  the WSJ1 and Aurora-4 continuous speech recognition tasks. This work proposes a hybrid convolutional neural network (HCNN), where two parallel layers are used to jointly model the acoustic and articulatory spaces, and the decisions from the parallel layers are fused at the output context-dependent (CD) state level. The acoustic model performs time-frequency convolution on filterbankenergy-level features, whereas the articulatory model performs time convolution on the articulatory features. The performance of the proposed architecture is compared to that of the CNN- and DNN-based systems using gammatone filterbank energies as acoustic features, and the results indicate that the HCNN-based model demonstrates lower word error rates compared to the CNN/DNN baseline systems.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International