• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications January 1, 1992

Integrating Neural Networks into Computer Speech Recognition Systems

Horacio Franco, Victor Abrash

Citation

Copy to clipboard


Cohen, M., Franco, H., Morgan, N., Rumelhart, D., Abrash, V., & Konig, Y. Integrating Neural Networks Into Computer Speech Recognition Systems.

Introduction

Most current state-of-the-art continuous-speech recognition systems are based on hidden Markov modeling techniques. The work described here involved integrating neural networks into a hidden Markov model-based state-of-the-art continuous-speech recognition system, resulting in improvements in recognition accuracy and reductions in model complexity. Hidden Markov models (HMMs) may be thought of as doubly stochastic finite state machines, consisting of a set of states, transition probabilities between states, and probability distributions over output symbols associated with each state. When used to model speech, these output symbols represent acoustic observations, modeling subphonetic acoustic events (e.g., closures, bursts, transitions). Current HMM-based speech recognition systems typically model phonetic units, or “phones” (e.g., the sound “m” in the word “map”), with a sequence of such states. Sequences of phone models can be concatenated to form word models. Word models can be connected according to grammatical constraints forming large networks that model any allowable sentence within an application. This approach allows a hierarchy of levels of linguistic description to be encoded within a uniform mathematical framework.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International