• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications May 1, 2014 Conference Paper

Lexical Stress Classification for Language Learning Using Spectral and Segmental Features

SRI authors: Victor Abrash, Kristin Precoda, Horacio Franco, Harry Bratt, Colleen Richey

Citation

Copy to clipboard


Ferrer, L., Bratt, H., Richey, C., Franco, H., Abrash, V., & Precoda, K. (2014, May). Lexical stress classification for language learning using spectral and segmental features. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7704-7708). IEEE.

Abstract

We present a system for detecting lexical stress in English words spoken by English learners.  The system uses both spectral and segmental features to detect three levels of stress for each syllable in a word.  The segmental features are computed on the vowels and include normalized energy, pitch, spectral tilt and duration measurements. The spectral features are computed at the frame level and are modeled by one Gaussian Mixture Model (GMM) for each stress class.  These GMMs are used to obtain segmental posteriors, which are then appended to the segmental features to obtain a final set of GMMs.  The segmental GMMs are used to obtain posteriors for each stress class. The system was tested on English speech from native English-speaking children and from Japanese-speaking children with variable levels of English proficiency.  Our algorithm results in an error rate of approximately 13% on native data and 20%on Japanese non-native data.

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International