• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Speech & natural language publications September 1, 2008 Conference Paper

Modeling prior belief for speaker verification SVM systems

SRI International September 1, 2008

Citation

Copy to clipboard


L. Ferrer, “Modeling prior belief for speaker verification SVM systems,” in Proc. 9th Annual Conference of the International Speech Communication Association 2008 (INTERSPEECH 2008), pp. 1385–1388.

Abstract

Support vector machines (SVMs) can be interpreted as a maximum a posteriori (MAP) estimation of a model’s parameters, for an appropriately chosen likelihood function. In the standard formulation for SVM classification and regression problems, the prior distribution on the weight vector is implicitly assumed to be a multidimensional Gaussian with zero mean and identity covariance matrix. In this paper we propose to relax the assumption that the covariance matrix is the identity matrix, allowing it to be a more general block diagonal matrix. In speaker verification, this covariance matrix can be estimated from held-out speakers. We show results on two speaker verification systems: a Maximum Likelihood Linear Regression (MLLR)-based system and a prosodic system. In both cases, the proposed prior model leads to more than 10pct improvement in equal error rate (EER) with respect to results obtained using the standard prior assumptions.

↓ Download

↓ Download

Share this

Facebooktwitterlinkedinmail

Publication, Speech & natural language publications Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International