• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications September 1, 2016

On the Issue of Calibration in DNN-Based Speaker Recognition Systems

Aaron Lawson, Mitchell McLaren

Citation

Copy to clipboard


McLaren, M., Castan, D., Ferrer, L., & Lawson, A. (2016, September). On the Issue of Calibration in DNN-Based Speaker Recognition Systems. In INTERSPEECH (pp. 1825-1829).

Abstract

This article is concerned with the issue of calibration in the context of Deep Neural Network (DNN) based approaches to speaker recognition. DNNs have provided a new standard in technology when used in place of the traditional universal background model (UBM) for feature alignment, or to augment traditional features with those extracted from a bottleneck layer of the DNN. These techniques provide extremely good performance for constrained trial conditions that are well matched to development conditions. However, when applied to unseen conditions or a wide variety of conditions, some DNN-based techniques offer poor calibration performance. Through analysis on both PRISM and the recently released Speakers in the Wild (SITW) corpora, we illustrate that bottleneck features hinder calibration if used in the calculation of first-order Baum Welch statistics during i-vector extraction. We propose a hybrid alignment framework, which stems from our previous work in DNN senone alignment, that uses the bottleneck features only for the alignment of features during statistics calculation. This framework not only addresses the issue of calibration, but provides a more computationally efficient system based on bottleneck features with improved discriminative power.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International