• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications September 1, 2008

Phone-based cepstral polynomial SVM system for speaker recognition

Citation

Copy to clipboard


S. S. Kajarekar, “Phone-based cepstral polynomial svm system for speaker recognition,” in Proc. 9th Annual Conference of the International Speech Communication Association 2008 (INTERSPEECH 2008), pp. 845–848.

Abstract

We have been using a phone-based cepstral system with polynomial features in NIST evaluations for the past two years. This system uses three broad phone classes, three states per class, and third-order polynomial features obtained from MFCC features. In this paper, we present a complete analysis of the system. We start from a simpler system that does not use phones or states and show that the addition of phones gives a significant improvement. We show that adding state information does not provide improvement on its own but provides a significant improvement when used with phone classes. We complete the system by applying nuisance attribute projection (NAP) and score normalization. We show that splitting features after a joint NAP over all phone classes results in a significant improvement. Overall, we obtain about 25% performance improvement with polynomial features based on phones and states, and obtain a system with performance comparable to a state-of-the-art SVM system.
Index Terms: Speaker recognition, feature extraction, pattern recognition.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International