• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications October 1, 2000

Prosodic Features for Automatic Text-Independent Evaluation of Degree of Nativeness for Language Learner

Citation

Copy to clipboard


Teixeira, C., Franco, H., Shriberg, E., Precoda, K., & Sönmez, M. K. (2000, October). Prosodic features for automatic text-independent evaluation of degree of nativeness for language learners. In INTERSPEECH (pp. 187-190).

Abstract

Predicting the degree of nativeness of a student’s utterance is an important issue in computer-aided language learning. This task has been addressed by many studies focusing on the segmental assessment of the speech signal. To achieve improved correlations between human and automatic nativeness scores, other aspects of speech should also be considered, such as prosody. The goal of this study is to evaluate the use of prosodic information to help predict the degree of nativeness of pronunciation, independent of the text. A supervised strategy based on human grades is used in an attempt to select promising features for this task. Preliminary results show improvements in the correlation between human and automatic scores, other aspects of speech should also be considered, such as prosody. The goal of this study is to evaluate the use of prosodic information to help predict the degree of nativeness of pronunciation, independent of the text. A supervised strategy based on human grades is used in an attempt to select promising features for this task. Preliminary results show improvements in the correlation between human and automatic scores.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International