back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Paper  September 1, 2013

Video Object Segmentation through Spatially Accurate and Temporally Dense Extraction of Primary Object Regions

Citation

COPY

Zhang, D., Javed, O., & Shah, M., (June 2013). “Video Object Segmentation through Spatially Accurate and Temporally Dense Extraction of Primary Object Regions”. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Abstract

In this paper, we propose a novel approach to extract primary object segments in videos in the ‘object proposal’ domain. The extracted primary object regions are then used to build object models for optimized video segmentation. The proposed approach has several contributions: First, a novel layered Directed Acyclic Graph (DAG) based frame-work is presented for detection and segmentation of the primary object in video. We exploit the fact that, in general, objects are spatially cohesive and characterized by locally smooth motion trajectories, to extract the primary object from the set of all available proposals based on motion, appearance and predicted-shape similarity across frames. Second, the DAG is initialized with an enhanced object proposal set where motion based proposal predictions (from adjacent frames) are used to expand the set of object proposals for a particular frame. Last, the paper presents a motion scoring function for selection of object proposal- that emphasizes high optical flow gradients at proposal boundaries to discriminate between moving objects and the background. The proposed approach is evaluated using several challenging benchmark videos and it outperforms both unsupervised and supervised state-of-the-art methods.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy