back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Paper  March 1, 2017

Zeroizing Attacks on Indistinguishability Obfuscation over CLT13

Citation

COPY

Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. “Zeroizing Attacks on Indistinguishability Obfuscation over CLT13.” In Public-Key Cryptography – PKC 2017 – 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I, pp. 41-58. Springer.

Abstract

In this work, we describe a new polynomial-time attack on the multilinear maps of Coron, Lepoint, and Tibouchi (CLT13), when used in candidate indistinguishability obfuscation (iO) schemes. More specifically, we show that given the obfuscation of the simple branching program that computes the always zero functionality previously considered by Miles, Sahai and Zhandry (Crypto 2016), one can recover the secret parameters of CLT13 in polynomial time via an extension of the zeroizing attack of Coron et al. (Crypto 2015). Our attack is generalizable to arbitrary oblivious branching programs for arbitrary functionality, and allows (1) to recover the secret parameters of CLT13, and then (2) to recover the randomized branching program entirely. Our analysis thus shows that almost all single-input variants of iO over CLT13 are insecure.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy