Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Proceeding  June 2018

Approaches to multi-domain language recognition

SRI Authors Mitchell McLaren, Mahesh Nandwana, Diego Castán

Citation

COPY

M, McLaren, M. Kumar Nandwana, D. Castan and L. Ferrer.  Approaches to multi-domain language recognition.  Speaker Odyssey 2018.  Forthcoming June 2018.

Abstract

Multi-domain language recognition involves the application of a language identification (LID) system to identify languages in more than one domain. This problem was the focus of the recent NIST LRE 2017, and this article presents the findings from the SRI team during system development for the evaluation. Approaches found to provide robustness in multi-domain LID include a domain-and-language-weighted Gaussian backend classifier, duration-aware calibration, and a source normalized multi-resolution neural network backend. The recently developed speaker embeddings technology is also applied to the task of language recognition, showing great potential for future LID research.

How can we help?

Discovery ServicesPreclinical/Early Clinical Development ServicesPartnership/CollaborationsBasic Research

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy