Using Transformations to Improve Semantic Matching

Citation

Yeh, P. and Porter, B. and Barker, K. Using Transformations to Improve Semantic Matching, in Proceedings of the Second International Conference on Knowledge Capture, 2003.

Abstract

Many AI tasks require determining whether two knowledge representations encode the same knowledge. Solving this matching problem is hard because representations may encode the same content but differ substantially in form. Previous approaches to this problem have used either syntactic measures, such as graph edit distance, or semantic knowledge to determine the “distance” between two representations. Although semantic approaches outperform syntactic ones, previous research has focused primarily on the use of taxonomic knowledge. We show that this is not enough because mismatches between representations go largely unaddressed. In this paper, we describe how transformations can augment existing semantic approaches to further improve matching. We also describe the application of our approach to the task of critiquing military Courses of Action and compare its performance to other leading algorithms.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.